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Effect of the Response Delay of the Measuring System
on Thermal Diffusivity Measurement Using the
Flash Method1

N. Araki,2, 3 D. W. Tang,2 M. Suzuki,2 and A. Makino2

This work investigates the effect of the response delay of a measuring system on
a thermal diffusivity measurement. A model of an m th-order delay in the
measuring system is introduced, and a general expression for the output of the
system with temperature response as input is derived. The effect on the tem-
perature response caused by such a system is discussed. As a practical example,
a third-order measuring system is considered. The measured temperature
responses of stainless steel foils are compared with those calculated with the
model of a third-order delay system. Good agreement between the two results
is shown.

KEY WORDS: flash method; response delay; thermal diffusivity; time con-
stant.

1. INTRODUCTION

It has been suggested that the flash method [1] should be a good method
not only for thick specimens, but also for thin foils. When the method is
employed to measure thin specimens, in order to obtain the temperature
responses correctly, the measuring system including devices such as a
sensor, preamplifier, etc., should be sufficiently fast. A response delay of the
devices may result in a significant measurement error. For a one-time-con-
stant system, the error due to response delay has been discussed by Araki
and Natsui [2] by introducing a time delay model as used in a low-pass
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filter. In practice, however, a system for measuring temperature response
usually includes multiple devices, which cannot be described by one time
constant.

In this paper, a measuring system with multiple devices is considered.
A general expression for the output of the system with temperature
response as input is derived. The effect on temperature response caused by
such a system is discussed. As a practical example, we consider a measuring
system used in our laboratory, which includes a (Hg, Cd)Te IR detector
with a time constant of 0.9 +s, a preamplifier of 0.64 +s, and a filter of
0.115 +s in series. The measured temperature responses in stainless steel
foils with thicknesses from 8 to 90 +m heated by a 15-ns YAG laser are
compared with calculations.

2. MODEL OF MEASURING SYSTEM WITH TIME DELAY

A system with m devices arranged in series is usually called an m th-
order system. According to Araki and Natsui [2], the delay of a system
with one time constant can be described by a first-order delay equation.
The time constant is determined by providing a stepwise input and measur-
ing the response time of the output as shown in Fig. 1.

In the present study, an m th-order system as shown in Fig. 2 is con-
sidered in which U1, U2, U3,..., Um are the components of the measuring
system, corresponding to electronic devices such as a sensor, amplifier,
filter, etc., with time constants {1 , {2 , {3 ,..., {m , respectively. If all of the
devices in the system are assumed to have the same delay process as shown
in Fig. 1, the delay between the input and output of the mth-order system
can be described by the following set of equations:

Fig. 1. Response time of a device in a measuring
system.
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Fig. 2. Block diagram of an mth-order delay system.

{1

d%1(t)
dt

+%1(t)=V(t) (1a)

{i
d%i (t)

dt
+%i (t)=%i&1(t), i=2, 3,..., m (1b)

which can be written in integral form as follows:

%1(t)=e&t�{1 _| et�{1

{1

V(t) dt+C1& (2a)

%i (t)=e&t�{i _| et�{i

{i
%i&1(t) dt+Ci& , i=2, 3,..., m (2b)

where Ci , i=1, 2, 3,..., m, are constants determined by initial conditions.

3. TEMPERATURE RESPONSE AS OUTPUT OF AN mTH-ORDER
DELAY SYSTEM

According to Parker et al. [1], the normalized temperature response
at the near surface of a specimen with short, pulsewise heating at the front
surface is

V(t)=1+2 :
�

n=1

(&1)n e&n2t�t0 (3)

where t0=L2�(?2a). Substituting Eq. (3) into Eq. (2) and using the initial
conditions

V(0)=%i (0)=0, i=1, 2,..., m (4)

we can obtain the temperature response as the output of the m th-order
delay system. For m=1,

%1(t)=1&e&t�{1+2 :
�

n=1

(&1)n _ e&n2t�t0

1&n2{1 �t0

&
e&t�{1

1&n2{1 �t0& (5)
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For m=2, 3,..., the output of the system is derived for the following two
cases.

1. Case where {1{{2{ } } } {{m . By using Eqs. (5) and (2b), the
temperature responses for m=2 and 3 are obtained as

e&n2t�t0

(1&n2{1 �t0)(1&n2{2 �t0)

%2(t)=1&
{1e&t�{1

{1&{2

&
{2e&t�{2

{2&{1

+2 :
�

n=1

(&1)n_ &
{1e&t�{1

({1&{2)(1&n2{1 �t0) &&
{2e&t�{2

({2&{1)(1&n2{2 �t0)

(6)

1&
{2

1e&t�{1

({1&{2)({1&{3)

%3(t)=_ &
{2

2e&t�{2

({2&{1)({2&{3) &&
{2

3 e&t�{3

({3&{1)({3&{2)

+2 :
�

n=1

(&1)n

e&n2t�t0

(1&n2{1 �t0)(1&n2{2 �t0)(1&n2{3 �t0)

(7)

&
{2

1e&t�{1

({1&{2)({1&{3)(1&n2{1 �t0)

&
{2

2e&t�{2

({2&{1)({2&{3)(1&n2{2 �t0)

&
{2

3e&t�{3

({3&{1)({3&{2)(1&n2{3 �t0)

From Eqs. (5)�(7), it is not difficult to write out the formula for the m th-
order system as follows:

%m(t)=1& :
m

i=1

{m&1
i e&t�{i

>m
j=1, j{i ({i&{j)

+2 :
�

n=1

(&1)n

__ e&n2t�t0

>m
i=1 (1&n2{i �t0)

& :
m

i=1

{m&1
i e&t�{i

(1&n2{i �t0) >m
j=1, j{i ({i&{j)& (8)
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Then, assuming Eq. (8) is valid as a general formula, according to Eq. (2b),
the formula for the (m+1)th-order should be

%m+1(t)=e&t�{m+1 _| et�{m+1

{m+1

%m(t) dt+Cm+1& (9)

Substituting Eq. (8) into Eq. (9) and using the initial condition given by
(4), we obtain, by a straightforward series of manipulations of integration,
the temperature response output from an (m+1)th-order delay system:

%m+1(t)=1& :
m+1

i=1

{m
i e&t�{i

>m
j=1, j{i ({i&{ j)

+2 :
�

n=1

(&1)n _
e&n2t�t0

>m+1
i=1 (1&n2{i�t0) & (10)

& :
m+1

i=1

{m
i e&t�{i

(1&n2{i �t0) >m+1
j=1, j{i ({i&{j)

Comparing Eqs. (8) and (10), and according to mathematical induction,
Eq. (8) is proved to be the general formula for an m th-order delay system.

2. Case where {1={2= } } } ={m={. The same method is used as in
the previous case. Then we obtain the formula

%m(t)=1&e&t�{ :
m

i=1

1
(i&1)! \

t
{+

i&1

+2 :
�

n=1

(&1)n _
e&n2t�t0

(1&n2{�t0)m & (11)

&e&t�{ :
m

i=1

1
(i&1)!

1
(1&n2{�t0)m&i+1 \t

{+
i&1

4. EFFECT OF SYSTEM DELAY ON THE MEASUREMENT OF
THERMAL DIFFUSIVITY

Utilizing Eqs. (10) and (11), we can show the effects of the delay on
temperature responses and thermal diffusivities for any multi-order system.
In the present study, a third-order system is considered because transient
temperature-measuring equipment is typically a third-order system, includ-
ing an IR detector, a preamplifier, and a filter.
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Fig. 3. Calculated temperature responses with
and without delay considered.

Figure 3 shows a typical output of a third-order system with Parker's
temperature response as input in dimensionless form. In this figure, the
Fourier numbers are defined as

Fo=
at
L2 , Fot=

a{
L2 , Foi=

a{i

L2

where the Foi (i=1, 2, 3) express the response delays of the three devices.
Fot expresses the response delay of the system if it is treated as a first-order
system. The comparison between the temperature responses with and
without delay considered shows that the measured temperature rise
becomes slower than the real one because of the response delay of the
measuring system, and this will result in a higher predicted value of the
half-time (time required to reach half the maximum value of temperature).
The curve for Fot=0.3 gives the temperature response as the output of a
first-order system with a time constant that has the same value as the
longest one in the third-order system. The curve for Fot=0.6 gives a tem-
perature response as the output of a first-order system with a time constant
whose value is the sum of three devices in the third-order system. The dif-
ferences between these curves and those of the third-order system show
that the delay of a third-order system cannot be described simply by the
longest time constant of the three devices or by the sum of the time con-
stants.

As a practical example, we used the multi-order system model to
analyze the data measured by laser flash equipment in our laboratory. This
equipment includes a 15-ns YAG pulse laser as a heating source and a
third-order measuring system for the temperature response made up of a
(Hg, Cd)Te IR detector with a time constant of 0.9 +s, a preamplifier of
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0.64 +s, and a filter of 0.115 +s arranged in series. We used this equipment
to measure the temperature responses in stainless steel foils with thick-
nesses from 8 to 90 +m, and we calculated the thermal diffusivities from
these temperature responses. The results are shown in Figs. 4 and 5.

In Fig. 4, the measured temperature responses for thicknesses of 50
and 10 +m are compared with calculated values using the formula for the
third-order system and with Parker et al. [1]. For thicker specimens (for
example, 50 +m), the measuring system is sufficiently fast for the temperature
responses. The calculations without delay considered show good agreement
with the experiments, while for thinner specimens (for example, 10 +m), the
experimental temperature responses become slower than the calculated
results using Parker's formula. However, for all specimens, the calculations
for a third-order system show good agreement with experiments.

Fig. 4. Comparison of experimental and calculated
temperature responses of SUS-304. (a) Thickness
of 50 +m (the two calculated results overlap the
experimental result). (b) Thickness of 10 +m (the
result with delay considered overlaps the experimen-
tal result).
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Fig. 5. Measured thermal diffusivities of SUS-
304 for various thicknesses.

Figure 5 shows the comparison of thermal diffusivities calculated by
Parker's half-time method and by fitting experimental data using the
formula for a third-order system. It can be seen that the data using the
formula with delay considered are almost independent of thickness, while
those using the formula without delay considered show a sharp decrease
when the specimens are thinner than 20 +m.

5. CONCLUSION

The general expression for the output of a measuring system with
multi-order delay is derived. The temperature responses calculated with
this formula show good agreement with experiments. This suggests that, if
the time constants of all devices in a system are accurately known, it is
possible to estimate the thermal diffusivity of thin specimens with tempera-
ture responses faster than the measuring system's response.
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